Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski, Gospodin Iliev
ISSN: 1312 773X (Online)
Issue: 2015, vol. 21, issue 1
Subject Area: Medicine
Pages: 747-751
DOI: 10.5272/jimab.2015211.747
Published online: 23 March 2015

J of IMAB 2015 Jan-Mar;21(1):747-751
Tatina T. TodorovaCorresponding Autor, Gabriela St. Tsankova, Neli M. Ermenlieva.
Department of Preclinical and Clinical Sciences, Faculty of Pharmacy, Medical University Varna, Bulgaria.

Mammalian transmissible spongiform encephalopathies are uncommon and irreversible diseases caused by prions. Prions lack nucleic acid and can self-propagate by converting normal cell protein to isomeric prion form. In the pathogenesis of these diseases a long variable incubation period occurs, followed by progressive appearance of severe clinical symptoms and death.
A major knowledge in the field of prions comes from studies on a functionally unrelated protein of yeast Saccharomyces cerevisiae – [URE3], which in normal state (Ure2p) possesses a variety of regulatory and enzymatic functions. Ure2p is a cytoplasmic homodimeric protein with structural homology to glutathione S-transferases and crucial role in nitrogen metabolism, oxidant protection and heavy metal resistance in yeast.
In this work, we discuss the role of Ure2p to provide valuable information about protein infectivity, prion structure and functions.

Key words: Transmissible Spongiform Encephalopathies, Prion-Induced Disorders, Yeast Prions, Ure2p,

- Download FULL TEXT /PDF 708 KB/
Please cite this article in PubMed Style or AMA (American Medical Association) Style:
Todorova TT, Tsankova GS, Ermenlieva NM. Yeast prion protein Ure2p – a useful model for human prion diseases. J of IMAB. 2015 Jan-Mar;21(1):747-751. DOI:

Correspondence to: Tatina T. Todorova, Department of Preclinical and Clinical Sciences, Faculty of Pharmacy, Medical University – Varna; 55, Marin Drinov Str., 9002 Varna, Bulgaria; E-mail:

1. Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013; 47:601-623. [CrossRef] [PubMed]
2. Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol. 1971 May; 106(2):519-522. [PubMed]
3. Aigle M, Lacroute F. Genetical aspects of [URE3], a non-mitochondrial, cytoplasmically inherited mutation in yeast, Mol Gen Genet. 1975; 136(4):327-335. [PubMed]
4. Cooper TG. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots, FEMS Microbiol Rev. 2002 Aug;26(3):223-238. [PubMed] [CrossRef]
5. Magasanik B, Kaiser CA. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 2002 May 15;290(1-2):1-18. [PubMed] [CrossRef]
6. Wickner RB. [URE3] as an altered URE2 Protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 1994 Apr 22;264(5158):566-569. [PubMed] [CrossRef]
7. Soto C, Castilla J. The controversial protein-only hypothesis of prion propagation. Nat Med. 2004 Jul;10:S63–S67. [CrossRef]
8. Masison DC, Maddelein ML, Wickner RB. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12503-12508. [PubMed]
9. Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells, Science. 1995 Oct 6;270(5233):93-95. [PubMed] [CrossRef]
10. Edskes HK, Gray VT, Wickner RB, The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1498-1503. [PubMed] [CrossRef]
11. Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science. 1999 Feb 26;283(5406):1339-1343. [PubMed] [CrossRef]
12. True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature. 2004 Sep 9;431(7005):184-187. [PubMed] [CrossRef]
13. Li L, Kowal AS. Environmental Regulation of Prions in Yeast. PloS Pathog. 2012 Nov; 8(11):e1002973. [CrossRef]
14. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB. Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10575-10580. [PubMed] [CrossRef]
17. Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987 Oct 23;51(2):229-40. [PubMed] [CrossRef]
18. Thual C, Komar AA, Bousset L, Fernandez-Bellot E, Cullin C, Melki R. Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J Biol Chem 1999 May 7;274(19):13666-13674. [PubMed]
19. Jiang Y, Li H, Zhu L, Zhou JM, Perrett S. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domain. J Biol Chem. 2004 Jan 30;279(5):3361-3369. [PubMed] [CrossRef]
20. Labbadia J, Morimoto RI. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci. 2013 Aug;38:378-385. [PubMed] [CrossRef]
21. Maddelein ML, Wickner RB. Two prion-inducing regions of Ure2p are nonoverlapping. Mol Cell Biol. 1999 Jun;19(6):4516-4524. [PubMed]
22. Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12825-12830. [PubMed] [CrossRef]
23. Coschigano PW, Magasanik B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol Cell Biol. 1991 Feb;11(2):822-832. [PubMed]
24. Bousset L, Belrhali H, Melki R, Morera S. Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds. Biochemistry 2001 Nov 13;40(45):13564-13573. [PubMed] [CrossRef]
25. Umland TC, Taylor KL, Rhee S, Wickner RB, Davies DR. The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1459-1464. [PubMed] [CrossRef]
26. Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, et al. Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded modules. J Mol Biol. 2009 Nov 20;394(1):108-118. [PubMed] [CrossRef]
27. Liebman SW, Chernoff YO. Prions in yeast. Genetics. 2012 Aug;191(4):1041-1072. [PubMed] [CrossRef]
28. Crespo JL, Daicho K, Ushimaru T, Hall MN. The GATA Transcription Factors GLN3 and GAT1 Link TOR to Salt Stress in Saccharomyces cerevisiae. J Biol Chem. 2001 Sep;276(37):34441-34444. [PubMed] [CrossRef]
29. Springael JY, Penninckx MJ. Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J. 2003 Apr 15;371(Pt 2):589-595. [PubMed]
30. Mashiyama ST, Malabanan MM, Akiva E, Bhosle R, Branch MC, Hillerich B, et al. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol. 2014 Apr;12(4):e1001843. [PubMed] [CrossRef]
31. Bai M, Zhou JM, Perrett S. The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms. J Biol Chem. 2004 Nov 26;279(48):50025-50030. [PubMed]]CrossRef]
32. Zhang ZR, Perrett S. Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils. J Biol Chem. 2009 May 22;284(210:14058-14067. [PubMed] [CrossRef]
33. Choi JH, Lou W, Vancura A. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1998 Nov 6;273(45):29915-29922. [PubMed] [CrossRef]
34. Basu U, Southron JL, Stephens JL, Taylor GJ. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Gen Genomics. 2004 Jun;271(5):627-637. [PubMed] [CrossRef]
35. Rai R, Tate JJ, Cooper TG. Ure2, a prion precursor with homology to glutathione S-transferase, protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. J Biol Chem. 2003 Apr 11; 278(15):12826-12833. [PubMed] [CrossRef]
36. Rai R, Cooper TG. In vivo specificity of Ure2 protection from heavy metal ion and oxidative cellular damage in Saccharomyces cerevisiae. Yeast. 2005 Apr 15;22(5):343-358. [PubMed] [CrossRef]
37. Todorova TT, Petrova VY, Vuilleumier S, Kujumdzieva AV. Response to different oxidants of Saccharomyces cerevisiae ure2Δ mutant. Arch Microbiol. 2009 Nov;191(11):837-845. [CrossRef]
38. Todorova TT, Kujumdzieva AV, Vuilleumier S. Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic. Arch Microbiol. 2010 Nov;192(11):909-918. [CrossRef]
39. Nicolas O, Gavín R, del Río JA. New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein. Brain Res Rev. 2009 Oct;61(2):170-84. [PubMed] [CrossRef]
40. Singh N, Das D, Singh A, Mohan ML. Prion Protein and Metal Interaction: Physiological and Pathological Implications. Curr Issues Mol Biol. 2010; 12(2):99-107. [PubMed].

Received: 07 November 2014
Published online: 23 March 2015

back to Online Journal