Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski Publishing Ltd.
ISSN:
1312-773X (Online)
Issue:
2020, vol. 26, issue1
Subject Area:
Medicine
-
DOI:
10.5272/jimab.2020261.2936
Published online: 24 February 2020
Original article

J of IMAB. 2020 Jan-Mar;26(1):2936-2941
EFFECTS OF RIMONABANT ON ACTIVE AVOIDANCE LEARNING IN BULBECTOMIZED RATS
Margarita Velikova1


, Dobrinka Doncheva1
, Roman Tashev2
,
1) Department of Physiology and pathophysiology, Medical University-Varna, Bulgaria.
2) Department of Pathophysiology, Medical University -Sofia, Bulgaria.
ABSTRACT:
The abnormal activity of endocannabinoid system has been implicated in the mechanisms of some psychiatric and neurological disorders. Olfactory bulbectomy (OBX) is an animal model of depression. We examined the effect of the CB1 antagonist Rimonabant (RIM) on the learning and memory processes of OBX rats tested in an active avoidance paradigm. RIM was administeredbyintragastric cannula to OBX rats once daily for 14 days. OBX rats were divided into three groups, and RIM was given before; immediately after; or 14 days after OBX. RIM showed a memory enhancing effect in the sham-operated rats and partially ameliorated the memory disturbances induced by the bulbectomy, given before OBX or 14 days after OBX. Only upon administration immediately after OBX, it prevented the development of the memory deficits. The study provides evidence that impaired endocannabinoid signalling may be involved in the development of cognitive deficits accompanying the OBX syndrome.
Keywords: Olfactory bulbectomy, cannabinoid receptor, memory, rat,
- Download FULL TEXT /PDF 947 KB/
Please cite this article as: Velikova M, Doncheva D, Tashev R. Effects of Rimonabant on active avoidance learning in bulbectomized rats. J of IMAB. 2020 Jan-Mar;26(1):2936-2941. DOI: 10.5272/jimab.2020261.2936
Correspondence to: Assoc. prof. Margarita Velikova, MD, PhD, Department of Physiology and Pathophysiology, Medical University; 55, M. Drinov Str., 9002 Varna, Bulgaria; E-mail: msvelikova@yahoo.com
REFERENCES:
1. Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005; 29(4-5):627-47. [PubMed]
2. Yehuda S, Rabinovitz S. Olfactory bulbectomy as a putative model for Alzheimer: The protective role of essential fatty acids. Pharma Nutrition. 2014; 2:12-14.
3. Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997; 74(3):299-316. [Pubmed] [Crossref]
4. Wuwongse S, Chang RC, Law AC. The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol. 2010 Aug;91(4):362-75. [PubMed]
5. Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013; 64:21-47. [PubMed] [Crossref]
6. Pertwee RG, Howlett AC, Abood ME, Alexander SP, DiMarzo V, Elphick MR, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands:beyond CB1and CB2. Pharmacol Rev 2010 Dec;62(4):588-631. [PubMed] [Crossref]
7. Cao C, Li Y, Liu H, Bai G, Mayl J, Lin X, et al. The potential therapeutic effects of THC on Alzheimer's disease. J Alzheimers Dis. 2014; 42(3):973-84. [PubMed] [Crossref]
8. Fernandez-Ruiz J, Romero J, Ramos JA. Endocannabinoids and Neurodegenerative Disorders: Parkinson’s disease, Huntington’s Chorea, Alzheimer’s Disease, and Others. Handb Exp Pharmacol. 2015; 231:233-59. [PubMed]
9. Lim K, See YM, Lee J. A Systematic Review of the Effectiveness of Medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders. Clin Psychopharmacol Neurosci. 2017; 15(4): 301-12. [PubMed] [Crossref]
10. Herrmann N, Ruthirakuhan M, Gallagher D, Verhoeff NPLG, Kiss A, Black SE, et al. Randomized placebo-controlled trial of nabilone for agitation in Alzheimer’s disease. Am J Geriatr Psychiatry. 2019 Nov;27(11): 1161-1173. [PubMed] [Crossref]
11. van den Elsen GA, Ahmed AI, Verkes RJ, Kramers C, Feuth T, Rosenberg PB, et al. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia: a randomized controlled trial Neurology. 2015 Jun 9;84(23):2338-46. [PubMed] [Crossref]
12. Stumm C, Hiebel C, Hanstein R, PurrioM, Nagel H, Conrad A, et al. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiol Aging. 2013 Nov;34(11):2574-84. [PubMed] [Crossref]
13. Kruk-Slomka M, Dzik A, Budzynska B, Biala G. Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol. 2017 Dec;54(10):8332-47. [PubMed] [Crossref]
14. Riedel G, Davies S. Cannabinoid function in learning, in: Handbook of experimental pharmacology, Eds: Barrett, James E. (2005) Springer; 168, pp.:445-77. [PubMed - https://www.ncbi.nlm.nih.gov/pubmed/16596784]
15. Marinov M, Ivanova M, Belcheva S, Belcheva I, Tashev R. Effects of acutely applied cannabinoid CB1 ligands on learning and memory in rats with a model of depression. C R Acad Bulg Sci. 2013; 66(9):1331-38.
16. Buresova O, Bures J. Capter 3. In: Techniques and Basic Experiments for the Study of Brain and Behavior. Bures J, Buresova O, Huston JP, editors. Elsevier Sci Publ; 2nd Revised & enlarged edition. 1983 June; pр.:135-208.
17. Kruk-Slomka M, Boguszewska-Czubara A, Slomka T, Budzynska B, Biala G. Correlations between the memory-related behavior and the level of oxidative stress biomarkers in the mice brain provoked by an acute administration of CB receptor ligands. Neural Plast 2016; 9815092. [PubMed] [Crossref]
18. Adam AS, Wenger T, Csillag A. The cannabinoid CB1 receptor antagonist rimonabant dose-dependently inhibits memory recall in the passive avoidance task in domestic chicks (Gallus domesticus). Brain Res Bull. 2008 Jun 15;76(3):272-4. [PubMed] [Crossref]
19. Deadwyler SA, Goonawardena AV, Hampson RE. Short-term memory is modulated by the spontaneous release of endocannabinoids: evidence from hippocampal population codes. Behav Pharmacol. 2007; 18(5-6): 571-80. [PubMed]
20. Lichtman AH. SR 141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur J Pharmacol. 2000 Sep 15;404(1–2):175-9. [PubMed] [Crossref]
21. Terranova JP, Storme JJ, Lafon N, Perio A, Rinaldi-Carmona M, Le Fur G, et al. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology (Berl). 1996 Jul;126(2):165-72. [PubMed] [Crossref]
22. Wolff MC, Leander JD. SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur J Pharmacol. 2003 Sep 23;477(3):213-17. [PubMed] [Crossref]
23. Hendriksen H, Korte SM, Olivier B, Oosting RS. The olfactory bulbectomy model in mice and rat: one story or two tails? Eur J Pharmacol. 2015 Apr 15;753:105-13. [PubMed] [Crossref]
24. King MG, Cairncross KD. Effects of olfactory bulb section on brain noradrenaline, corticosterone and conditioning in the rat. Pharmacol Biochem Behav. 1974 May;2(3):347-53. [PubMed] [Crossref]
25. Tashev R, Ivanova M, Toromanov T, Marinov M, Belcheva S, Belcheva I. Olfactory bulbectomy impairs active and passive avoidance learning in rats. Comptes rendus de l’Acadeмmie bulgare des sciences. 2010; 63(4):617-22.
26. van Riezen H, Schnieden H, Wren AF. Olfactory bulb ablation in the rat: behavioural changes and their reversal by antidepressant drugs. Br J Pharmacol. 1977 Aug;60(4):521-8. [PubMed] [Crossref]
27. Eisenstein SA, Clapper JR, Holmes PV, Piomelli D, Hohmann AG. A role for 2-arachidonoylglycerol and endocannabinoid signaling in the locomotor response to novelty induced by olfactory bulbectomy. Pharmacol Res. 2010 May;61(5):419-29. [PubMed] [Crossref]
28. Smaga I, Jastrzкbska J, Zaniewska M, Bystrowska B, Gawliсski D, Faron-Gуrecka A, et al. Changes in the Brain Endocannabinoid System in Rat Models of Depression. Neurotox Res 2017 Apr;31(3):421-35. [PubMed] [Crossref]
29. Ruhl T, Moesbauer K, Oellers N, von der Emde G. The endocannabinoid system and associative learning and memory in zebrafish. Behav Brain Res. 2015 Sep 1;290:61-9. [PubMed] [Crossref]
30. Wise LE, Thorpe AJ, Lichtman AH. Hippocampal CB(1) Receptors Mediate the Memory Impairing Effects of Delta(9)-tetrahydrocannabinol. Neuropsychopharmacology. 2009 Aug;34(9):2072-80. [PubMed] [Crossref]
31. Gifford AN, Bruneus M, Gatley SJ, Volkow ND. Cannabinoid receptor-mediated inhibition of acetylcholine release from hippocampal and cortical synaptosomes. Br J Pharmacol. 2000 Oct;131(3):645-50. [PubMed] [Crossref]
32. Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999 Jun 1;19(11):4544-58. [PubMed] [Crossref]
33. Liu Q, Bhat M, Bowen WD, Cheng J. Signaling pathways from cannabinoid receptor-1 activation to inhibition of N-methyl-D-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J Pharmacol Exp Ther. 2009 Dec;331(3):1062-70. [PubMed] [Crossref].
Received: 13 January 2020
Published online: 24 February 2020
back to Online Journal