ABSTRACT

Background: Clinical success and functional durability of indirect restorations depend on optimal dental health before the prosthetic treatment and the manipulation of the gingival tissues.

The aim of the current article is to review the surgical and non-surgical laser methods that can be applied as periodontal preparation in fixed prosthodontics.

Review results: Preprosthetic periodontal preparation includes conventional periodontal therapy (non-surgical) and periodontal resective (surgical) procedures - soft and hard tissue crown lengthening. The advantages of lasers in the latter are reduced bleeding, less postoperative discomfort and faster healing. Non-surgical preprosthetic preparation, on the other hand, aims at microorganisms’ level reduction. The variety of protocols, which reduce the microbial number significantly, show photoactivated disinfection as adjunctive therapy in infection treatment, especially in patients with resistant microorganisms and anatomical complications.

Conclusion: Lasers can be applied as an alternative to the classic surgical and non-surgical means for periodontal procedures. Low-level laser therapy and photoactivated disinfection ensure faster bacteriolysis and affect the microorganisms locally, whereas systemic medicines influence the whole organism. Photodynamic therapy does not require maintaining high concentrations of the photosensitizer in the infected area, as it is when using antiseptics and antibiotics.

Keywords: low-level laser therapy, photoactivated disinfection, photobiomodulation, photodynamic therapy,
tectomy and osteoplasty to determine the new gingival level. [2]

Creating a 3 mm distance from the alveolar ridge to the margin of the future restoration results in stable periodontal tissue at that level. [3-4] The abovementioned distance was proved by Gargiulo et al. in 1961 and is based on the biologic width concept. [1] Surgical crown lengthening can be performed after finishing the initial hygienic phase.

The following indications for crown lengthening have been established:

- Altered passive eruption (APE).
- Deep subgingivally located finish line, at which the impression taking is difficult.
- Deep subgingival carious lesion.
- Root fracture in the cervical third.
- Root obturation in the cervical area.
- Achieving ferrule effect with short crowns. [5-7]
- Perforation of a parapulpal pin in the cervical third of the root.
- Insufficient retention of the artificial crown because of the reduced clinical crown length.
- Deep subgingival margin leading to an inflammatory reaction that cannot be controlled otherwise. [8-10]
- Odontoplasty in combination with resection or hemisection of a single root in advanced furcation lesions of multiple-root teeth.
- Heavily abraded dentition prior to the restoration.
- The need to improve the esthetic appearance of front teeth with short clinical crowns and a gingival (high) smile line. [9-16]

Lasers and Non-surgical Preprosthetic Preparation. Low-Level Laser Therapy and Photoactivated Disinfection

Everyday dental clinical manipulations aim at reducing the number of microorganisms. There is a number of protocols that notably diminish the microbial number, i.e., disinfection (PAD), or photodynamic therapy (PDT). The latter serve as adjunctive therapy in infection treatment, especially in patients with resistant microorganisms and anatomical complications.

High-intensity laser irradiations leads to temperature rise, protein denaturation and destruction of decontaminating microorganisms. [17] Such effects cannot be expected when applying low-level laser therapy (LLLT), or photobiomodulation (PBM), because it is unable to achieve such high temperatures. [18] Nevertheless, soft lasers exhibit proven antimicrobial properties. This effect is achieved by combining low-level lasers with photosensitizers, thus reactive oxygen species (ROS) are released. The latter lead to a destruction of cell membranes, mitochondria and deoxyribonucleic acid (DNA), therefore microbial reduction is inevitable.

The antimicrobial capacity of PAD and PBM is used for increasing the microbial reduction and pain levels in periodontal, restorative, endodontics, pediatric and implantology conventional therapy. [19-24] Viral inactivation and successful treatment of infections caused by the herpes simplex type I virus are proven. [25-27]

A combination of an adequate light source and a photosensitized targeted to the specific pathogen – PAD, is essential for effective bacterial infection elimination. Hence, photosensibilisation takes place in subgingival or superficial oral tissues. [28] The most frequently used source of photosensibilisation in dentistry is the low-level laser because it:

- Has a narrow spectral range, which allows more specific interactions with the photosensitizers.
- Can be connected to optical fibers.
- Does not lead to tissue temperature increase, as it is seen when using a polychromatic light. [28]

DISCUSSION

Lasers can be successfully applied in periodontal preprosthetic procedures. [8-10] The clinical advantages of laser application for the dentist, as well as for the patient, are reduced bleeding and less postoperative discomfort and oedema, compared to the conventional surgical techniques and electrosurgery. [9-16] Moreover, the clean operative field, due to the excellent hemostasis and moisture control, ensures more precision in the execution of the prosthetic procedure. The main advantage over all the instruments was water cooling, which made the manipulations gentler, the reactions after them (pain, redness and swelling) – more sluggish, and the healing – faster.

The use of light emitting diode (LED) light was also described in the literature. A few positively charged photosensitizers suitable for PDT, such as toluidine blue and poly-L-lysine-chlorine derivates. [29] The incubation period between the photosensitizing agent and the pathogens lasts within a few minutes, therefore it should be taken into consideration prior to the laser irradiation. [29]

Despite the numerous advantages of PAD, its major drawback is a lack of standardization and confirmed protocols. Clinicians have been researching the antiseptic properties of PDT, the ideal light source, the suitable photosensitizer for each bacterial species or target tissue, in addition to the appropriate light intensity and power settings. Protocols derived from this extensive in vivo and in vitro research demonstrated safety and superior clinical results, proving the safety of using PAD. [30, 31]

Feurstein et al. reported how blue light affected biofilm formation. The two main assumptions are about to be validated in vivo. The first conclusion was that when Streptococcus mutans was exposed to blue light, the new biofilm formation was affected, leading to increasing the number of destroyed bacteria. [31] The second one is that
earlier research showed that blue light, connected with hydrogen peroxide, had a strong antibacterial effect on the biofilm. [31, 32, 33] A synergic effect between blue light and hydrogen peroxide exists. The phototoxic effect of Streptococcus mutans is mainly photochemical, with ROS. If such light is applied on an infected tooth, in a combination with hydrogen peroxide, it presents as an adjunctive minimally treatment.

CONCLUSION
Lasers can be applied as an alternative to the classical surgical and non-surgical means for periodontal procedures. They present with reduced bleeding and postoperative oedema, as well as faster healing. Low-level laser therapy and photoactivated have several advantages compared to the traditional antimicrobial agents. They ensure faster bacteriolysis and affect the microorganisms locally, whereas systemic medicines influence the whole organism. Photoactivated disinfection does not require maintaining high concentrations of the photosensitizer in the infected area, as it is when using antiseptics and antibiotics. Moreover, it does not damage or change the adjacent structures like periodontal or periapical tissues, even when a high concentration of the dye and the laser energy are applied.

REFERENCES:
25. Chan Y, Lai CH. Bactericidal effect of different laser wavelengths in

J of IMAB. 2022 Apr-Jun;28(2) https://www.journal-imab-bg.org


Please cite this article as: Kazakova R. Surgical and Non-Surgical Laser Preprosthetic Periodontal Preparation. Low-Level Laser Therapy and Photoactivated Disinfection. J of IMAB. 2022 Apr-Jun;28(2):4431-4434.

DOI: https://doi.org/10.5272/jimab.2022282.4431

Received: 23/06/2021; Published online: 27/06/2022

Address for correspondence:
Rada Kazakova
Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University – Plovdiv, Bulgaria
3 ‘Hristo Botev’ Blvd
E-mail: rada.kazakova@mu-plovdiv.bg