Case report

M. FLEXOR HALLUCIS LONGUS TENDON RECONSTRUCTION WITH M. PLANTARIS GRAFT – A CASE DESCRIPTION AND REHAB PROGRAM

Margarita Kateva1, Denitsa Vasileva2, Georgi Petrov3
1) Department of Hand and Reconstructive Surgery, University Hospital “SOFIAMED”, Sofia, Bulgaria.
2) Department of Public Health and Health Care, University “Angel Kanchev” Ruse, Bulgaria.
3) Physiotherapy Center “Hand Rehab Consult” LTD, Sofia, Bulgaria.

ABSTRACT:
Isolated m.Flexor Hallucis Tendon (FHL) rupture is rare and uncommon. We looked for information on the topic of reconstruction of m.flexor hallucis longus and subsequent rehabilitation in the scientific databases of SCOPUS, Elsevier and Google Scholar, but the information found was scarce and partial. This provoked us to share our experience in surgical treatment and subsequent recovery from this type of injury.

Case description and patient’s information: The considered clinical case concerns a 46-year-old woman with the inability to actively bend the big toe and altered sensitivity of the foot and its plantar surface. Ligamentotomy in the area of the tarsal canal and decompression of the n.tibialis sin was performed surgically. A thorough gentle debridement was performed in the tarsal canal with tenoplasty of the flexor hallucis longus with a graft of m. plantaris.

Therapeutic intervention: The physiotherapy program was divided into three periods: I (1-6) postoperative week, II (6-12th) postoperative week and III (12-24th) postoperative week.

Follow–up and outcomes: The patient was tested three times - on the third postoperative day, at the end of the 12th and at the end of the 24th postoperative week. The test battery included centimetry, goniometry, visual analogue scale (VAS), and manual muscle testing.

Conclusion: Based on the difference in the values of the studied indicators in the initial postoperative and final results after reconstruction of FHL with plantar graft and postoperative rehabilitation, we believe that this combination of surgical technique and subsequent physiotherapy protocol is highly effective, with excellent functional outcome.

Keywords: m.Flexor Hallucis Longus, tendon rupture, physiotherapy.

INTRODUCTION:
Injuries to the tendons of the foot can be caused by direct, indirect trauma or be a result of a repetitive strain [1]. Chronic tendon rupture can be a real challenge - from its reconstruction to its complete recovery [2]. Isolated rupture of the flexor hallucis longus (FHL) is an unusual and rare trauma [3]. However, it is possible that it is underdiagnosed [4]. It is most common in athletes and ballet dancers [5].

The anatomical structure of the FHL is complex [6]. The flexor hallucis longus tendon is one of the longest in the foot and is susceptible to trauma throughout its course. In addition, it is the tendon with the most anatomical sites of deformity possible in the area of the foot and toes [7]. According to the location of the laceration, which may be anywhere along the entire course of the tendon, it is classified into 3 zones [8]. Zone 1 refers to a rupture distal to the sesamoids, zone 2 is a rupture between the sesamoids and knot of Henry (KoH), and zone 3 is proximal to the KoH. A zone 3 rupture may lead to the proximal retraction of the tendon, but ruptures in zone 1 and 2 do not, thanks to the fibrous slip connecting FHL and flexor digitorum longus (FDL). The length of ostrigonum (OT) is also an important factor in the pathology of FDL, as the possibility of lesion increases with a bigger OT length [9]. Diagnosis of FHL rupture is simple and easy - by test and MRI, as well as by retromaleolar compression test [10]. Additionally, diagnostic ultrasound is used to evaluate muscle movement and identify potential impingement sites [11,12,13]. Reconstruction of the FHL tendon with a graft requires precise and adequate postoperative recovery [14]. Rehabilitation tasks are related to neuromuscular re-education, correction of improper sports equipment and physical training to minimize relapses [15]. We looked for information on the topic of reconstruction of m.flexor hallucis longus and subsequent rehabilitation in the scientific databases of SCOPUS, Elsevier and Google Scholar, but the information found was scarce and partial. This provoked us to share our experience in surgical treatment and subsequent recovery from this type of injury.
CASE DESCRIPTION/PATIENT’S INFORMATION:

The described clinical case concerns a 46-year-old woman that presented in the clinic with the inability to actively bend the big toe and altered sensitivity of the foot and its plantar surface. Examination by an orthopedic surgeon found extensor contracture in the left thumb, no active flexion in the same, paresthesias in the course of n. peroneus profundus sinistra, hypoaesthesia in the course of n. tibialis sinistra, no evidence of a vascular problem.

Ligamentotomy in the area of the tarsal canal and decompression of the n. tibialis sin was performed surgically. A thorough, gentle debridement was performed in the tarsal canal with tenoplasty of the flexor hallucis longus with a graft of m. plantaris. At the site of the formation of the skin defect in the area of the thumb, a skin plasty with a local skin flap was made. The interphalangeal joint of the thumb was fixed with a K-wire. The leg was immobilized by plastic ankle-foot orthosis for a period of 6 weeks. Rehabilitation started immediately after the surgery.

THERAPEUTIC INTERVENTION:

The physiotherapy program was divided into three phases:

I phase (1–6th week) included: foot and lower leg massage, cryotherapy, anti-edema kinesiotaping, passive movements of the thumb, fingers and ankle, controlled active motions of the ankle, isometric contractions for the quadriceps and gluteus, appropriate mobility exercises for the hip and the knee. Weight bearing on the operated limb was forbidden, and the walking was with crutches.

II phase (6 – 12th week) included: foot and lower leg massage, cryotherapy, active and resistive motions for the thumb, fingers and ankle joint, resistive exercises for the quadriceps and gluteus through teraband, free active motions along the anatomical axes of the knee and hip joints of the operated limb. Walking is free without the use of aids.

III phase (12 – 24th week) included: foot and lower leg massage, cryotherapy, active and resistive motions for the thumb, fingers and ankle joint, resistive exercises for the quadriceps and gluteus through teraband, free active motions along the anatomical axes of the knee and hip joints of the operated limb. Walking is free without the use of aids.

FOLLOW–UP AND OUTCOMES:

The patient was measured at three-time points - on the third postoperative day, at the end of the 12th at the end of the 24th postoperative week. The test battery included circumference measurement, goniometry, visual analogue scale (VAS), and manual muscle testing.

The results of the circumference measurement show initial postoperative edema at all levels at the first time point. At the end of the 12th postoperative week, a reduction of the circumference by 1 to 2 cm, indicating a reduction of the swelling, was observed at all measured levels. At the end of the study period, the edema was completely reduced, and the circumference measurement at the levels of MTFJ, foot, ankle joint, middle of crus and knee joint did not show any difference with the same levels in the non-operated limb. (Table 1)

<table>
<thead>
<tr>
<th></th>
<th>3rd postoperative day</th>
<th>12 postoperative week</th>
<th>24 postoperative week</th>
<th>unoperated leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTFJ</td>
<td>24,5</td>
<td>23</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Foot</td>
<td>26</td>
<td>24,5</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Ankle joint</td>
<td>31</td>
<td>29</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Middle of crusus</td>
<td>38,5</td>
<td>37,5</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Knee joint</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 1. Circumference measurements

For measuring the range of joint motion of the operated limb, we used goniometry of the interphalangeal joint of the thumb, metatarsophalangeal joint of the thumb, ankle joint and knee joint. On the 3rd postoperative day, there was a complete lack of active motion in the interphalangeal joint of the thumb, severe limitation in the mobility of the metacarpophalangeal joint of the thumb and contracture in the ankle joint with a lack of dorsal flexion. This deficit in the range of motion of these joints is due to the immobilization of the limb postoperatively in the splint and the restrictions on movements in the early postoperative period. A deficiency of 5p in the knee flexion of the operated limb, compared to the healthy one, is also reported, which we interpreted as a consequence of the long preoperative period with an antalgic gait. At the end of the 12th postoperative week, there was an increase in the range of motion in all examined joints, but there was still a deficit at all levels compared to the non-operated limb. Goniometry at the end of the 24th postoperative week showed that the operated limb reached the normal range of motion in all joints as compared with the non-operated limb (Table 2).
As expected, the pain level was high in the early postoperative period both at rest and in motion with digital values of VAS 6 and 9. With the progression of the rehabilitation process, the pain gradually began to decrease, as the reported values at the end of the 12th postoperative week are respectively 2 at rest and 4 in motion. At the end of the 24th postoperative week, the value of the VAS is zero, indicating an absence of pain both at rest and in motion (Table 3).

Table 2. Goniometry results

<table>
<thead>
<tr>
<th></th>
<th>3rd postoperative day</th>
<th>12 postoperative week</th>
<th>24 postoperative week</th>
<th>unoperated leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITFJ</td>
<td>S: 0 – 0 – 0</td>
<td>S: 10 – 0 – 20</td>
<td>S: 40 – 0 – 40</td>
<td>S: 40 – 0 – 40</td>
</tr>
<tr>
<td>MTFJ</td>
<td>S: 0 – 0 – 10</td>
<td>S: 10 – 0 – 25</td>
<td>S: 30 – 0 – 50</td>
<td>S: 30 – 0 – 50</td>
</tr>
<tr>
<td>Ankle joint</td>
<td>S: 0 – 0 – 15</td>
<td>S: 10 – 0 – 30</td>
<td>S: 20 – 0 – 45</td>
<td>S: 20 – 0 – 45</td>
</tr>
<tr>
<td>Knee joint</td>
<td>S: 0 – 0 – 125</td>
<td>S: 0 – 0 – 130</td>
<td>S: 0 – 0 – 130</td>
<td>S: 0 – 0 – 130</td>
</tr>
</tbody>
</table>

The manual muscle testing (MMT) results show significant differences in muscle strength at the beginning and at the end of the study period (3rd postoperative day - 24th postoperative week). Initially, m.flexor hallucis longus was not tested postoperatively to protect the reconstruction. There was a gradual recovery of muscle strength in the main muscles that move the ankle joint during the recovery period until their full recovery. This was also reported in the reconstructed m.flexor hallucis longus at the end of the 24th postoperative week. (Table 4)

Table 3. VAS results

<table>
<thead>
<tr>
<th></th>
<th>3rd postoperative day</th>
<th>12 postoperative week</th>
<th>24 postoperative week</th>
</tr>
</thead>
<tbody>
<tr>
<td>in rest</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>in motion</td>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. Manual muscle testing results

<table>
<thead>
<tr>
<th>Muscle</th>
<th>3rd postoperative day</th>
<th>12 postoperative week</th>
<th>24 postoperative week</th>
</tr>
</thead>
<tbody>
<tr>
<td>triceps surae</td>
<td>50%</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>tibialis anterior</td>
<td>50%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>tibialis posterior</td>
<td>60%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>fibularis longus et brevis</td>
<td>60%</td>
<td>65%</td>
<td>100%</td>
</tr>
<tr>
<td>flexor hallucis longus</td>
<td>-</td>
<td>60%</td>
<td>100%</td>
</tr>
</tbody>
</table>

CONCLUSION:

Based on the difference in the values of the studied indicators in the initial postoperative and final results after reconstruction of FHL with plantar graft and postoperative rehabilitation, we believe that this combination of surgical technique and physiotherapy protocol is highly effective, with excellent functional outcomes.
REFERENCES:

Please cite this article as: Kateva M, Vasileva D, Petrov G. M. Flexor Hallucis Longus Tendon Reconstruction with m. Plantaris Graft – A Case Description and Rehab Program. *J of IMAB.* 2023 Apr-Jun;29(2):4857-4860.

DOI: https://doi.org/10.5272/jimab.2023292.4857

Received: 07/10/2022; Published online: 05/04/2023

Address for correspondence:
Denitsa Vasileva,
Department of Public Health and Health Care, University “Angel Kanchev” Ruse, Bulgaria.
97, Aleksandrovskva str., Ruse, Bulgaria.
E-mail: ddecheva@uni-ruse.bg