STUDY OF TRENDS IN THE ETIOLOGICAL STRUCTURE OF NOSOCOMIAL INFECTIONS BEFORE AND DURING THE COVID-19 PANDEMIC IN THE RUSE REGION FOR 2017-2021

Daniel Monov¹, Tsonko Paunov²

¹) Educational Sector “Public Health Inspector”, Medical College, Medical University – Varna, Bulgaria.
²) Department of Hygiene and Epidemiology, Faculty of Public Health, Medical University, Varna, Bulgaria.

ABSTRACT
The most important and very difficult thing is to establish the cause (etiology) for the occurrence of nosocomial infections in medical facilities in the country and the world.

Objective: To study the frequency and structure of nosocomial infections before and during the Covid-19 pandemic in the Ruse region for 2017-2021.

Materials and methods: A retrospective analysis of the data on the registered nosocomial infections for a period of five years (2017 - 2021), reports, analyses, and laboratory studies of Regional Health Inspectorate Ruse, from national governmental studies, normative documents and literature are applied.

Results: The analysis of the data from the etiological diagnosis of nosocomial infections in the Ruse region is from 9 medical facilities included in the national electronic system for the control of nosocomial infections (NIs). The etiological structure of NIs in the Ruse region is represented by 39 microbial species. The relative share of the untested varies from 10.59% in 2017 to 15.75% in 2021. For the etiologically unproven, it is from 2.39% for 2019 to 1.68% for 2021, with a decreasing trend.

Conclusions: The analysis of the isolated microbial species by group shows that for the entire period, the proportion of gram-negative flora was 62% of the isolates (2017), followed by 23.02% of gram-positive microorganisms (2017), and the relative proportion of fungi and viruses was ~ 3 %.

Keywords: etiology, nosocomial infections, structure, laboratory diagnostics,

The mass nature of medical care, the widespread use of antibiotics, changes in the demographic structure of the population, the nature of pathogens, and the body’s immune reactivity are leading factors in the emergence, development and spread of HAI. The most important and very difficult is the establishment of the cause of the occurrence of the disease. The medical science that studies the causes of the occurrence of disease is etiology (from Greek: αἰτία - “cause” and λογία - “science”). The reasons (risk factors) for the spread of NI are studied. More important of them are: the presence of concomitant diseases, dependence on the pre-morbid state of the patient, many different microbial agents, very high drug resistance and wrong therapeutic approach [1, 2].

OBJECTIVE: To study the frequency and structure of nosocomial infections in the Ruse region for 2017-2021.

MATERIALS AND METHODS: A retrospective analysis of the data on the registered nosocomial infections for a period of five years (2017 - 2021), the procedures for the registration of nosocomial infections on the territory of the district with 9 medical facilities per report in Ruse, access to public information (State educational requirements) was applied), reports, analyzes and laboratory analyzes of Regional Health Inspectorate Ruse. Documentary method and comparative analysis are supplemented with statistical processing and presented in graphical and tabular form.

The analysis of the data from the etiological decoding of nosocomial infections in the Ruse region is from 9 medical facilities included in the national electronic information system for the control of nosocomial infections (according to Ordinance No. 3 of May 8, 2013, for the approval of medical standards on prevention and control of nosocomial infections).

For the period 2017-2021, a total of 378,711 patients were hospitalized in the Ruse region, and the data by year show an uneven trend from 78,913 (2017) people, 80,169 (2019) people, to 71,014 (2021) people, probably influenced by the covid19 pandemic (Fig. 1).
The incidence of nosocomial infections in the Ruse region for 2017-2021 is shown per 1,000 transferred patients, comparing it with the average values for Bulgaria. With a total of 3,426 registered nosocomial infections, the indicator is 0.90 per 1,000 transferred patients for this period (Fig. 2).

The relative share of nosocomial infections, compared with that for the country, shows that the trends are on the rise in the district and without sharp fluctuations by those for Bulgaria. The sharp jump to 1.56% in 2021 in Ruse is related to the Covid-19 pandemic, reduced number of sick patients, but many severe cases and double registered NI.

Fig. 2. Relative share of nosocomial infections in Ruse region and Bulgaria for 2017-2021

We analyze the microbiological laboratory tests, which specify an etiological diagnosis, the most accurate and pointing to the correct therapy. For the five-year period, 187 types of microbial pathogens were diagnosed, from the beginning of 2017, from 35 types, 2018-33 types, 2019- 36 types, 2020-38 types, reaching 39 types in 2021.

Table. 1. Isolated microbial species: bacteria (By Gram), viruses, fungi, anaerobes in the Ruse region for 2017-2021

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria – Gr.(-)</td>
<td>61.68</td>
<td>60.25</td>
<td>72</td>
<td>61.47</td>
<td>56.88</td>
</tr>
<tr>
<td>Bacteria – Gr. (+)</td>
<td>23.02</td>
<td>25.25</td>
<td>28</td>
<td>11.8</td>
<td>0</td>
</tr>
<tr>
<td>Fungi</td>
<td>3.52</td>
<td>3.03</td>
<td>0.4</td>
<td>4.65</td>
<td>8.55</td>
</tr>
<tr>
<td>Viruses</td>
<td>3.03</td>
<td>0.51</td>
<td>0.8</td>
<td>3.96</td>
<td>0</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The predominance Gram-negative bacteria is unfavorable. They have less sensitivity to antibiotics, which is an important problem in the control of NIs.

The relative share of the untested NIs is with a rising trend and an unrecognized descending trend (Fig. 3). The decrease leads to better therapeutic choices. These data are important for assessing the compliance and the ability of healthcare facilities to adequately deal with the NI problem.

Fig. 3. Relative share of the untested and unrecognized cases in the structure of the nosocomial infections in the Ruse region for 2017-2021

The presented microbial species are considered according to their characteristics: bacteria (gram-positive and gram-negative), viruses, fungi, anaerobes (Tab. 1). Knowing their characteristics and antimicrobial resistance is part of microbiological research and helps treatment.

Table. 2. Most frequently isolated 24 types of nosocomial infections microbial agents in the Ruse region for 2017-2021

<table>
<thead>
<tr>
<th>Etiological pathogen (%)</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii</td>
<td>17.65</td>
<td>9.93</td>
<td>11.14</td>
<td>11.08</td>
<td>11.25</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>11.26</td>
<td>9.93</td>
<td>10.34</td>
<td>9.63</td>
<td>9.9</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>7.39</td>
<td>10.94</td>
<td>9.94</td>
<td>14.45</td>
<td>9.36</td>
</tr>
<tr>
<td>CNS</td>
<td>12.63</td>
<td>11.53</td>
<td>11.08</td>
<td>8.28</td>
<td></td>
</tr>
</tbody>
</table>
The main causative agents that we found in the analysis for five years period in the Ruse region are representatives of the Gram-negative bacterial flora: Acinetobacter, Pseudomonas, Enterobacter, Escherichia, Klebsiella, etc. (Tab. 1, 2). In all years, the values are high, from 61.68% in 2017 and 72% in 2019, with a drop to 56.88% in 2021. This has also been described in studies showing that these infections develop in a compromised environment, in immunocompromised patients with acute or chronic disease whose upper respiratory tract is colonized with Gram-negative microorganisms. This creates a real possibility for NI during respiratory resuscitation [3].

Gram-positive flora: (Clostridium, Corynebacterium, Staphylococci and Streptococci, etc.) are represented with a much smaller share, up to 11.08% for 2020 as well as a decrease at the end of the period to 0.17% for 2021.

Another group of infectious agents are viruses, presented by influenza, rotaviruses and SARS-Cov-2. Diagnosed viruses in the study were recorded over 4 years with a range of 3.52% to 3.96% (Tab. 2). These pathogens also carry a risk for the development of nosocomial infections, which in recent years have been extensively studied throughout the world [4].

Gram-positive flora: (Clostridium, Corynebacterium, Staphylococci and Streptococci, etc.) are represented with a much smaller share, up to 11.08% for 2020 as well as a decrease at the end of the period to 0.17% for 2021.

The analysis of the isolated types of etiological causative agents by year shows that a group of causative agents Acinetobacter baumannii, Klebsiella pneumoniae Pseudomonas aeruginosa, Coagulase-negative staphylococci (CNS), Serratia marcescens, Candida albicans is forming, which occupy the first three to five positions in the ranking, changing individual in years their places. In total, they form over 50% of NIs registered in the district’s medical facilities. (Fig.4)

Our study shows the various etiological agents with their organ (clinical) localization distributed by year: Acinetobacter baumannii. This pathogen predominates in all years with Lower Respiratory Tract Infections (LRTIs), Ventilator-associated pneumonia (VAP) and Blood Stream Infections (BSIs) (fig. 5).
Fig. 4. Relative share of microorganisms group with leading ranking positions in the structure of the nosocomial infections for 2017-2021 (*Incl.: Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, CNS, Serratia marcescens Candida albicans)*

Fig. 5. Relative share of clinical localization for Acinetobacter baumannii in the Ruse region for 2017-2021.

Klebsiella pneumoniae. Five groups of organ infection localizations are available: 1. Infections of the eye, ear, nose and oro-pharyngeal cavity (IEENOC); 2. LRTIs; 3. VAP; 4. Surgical site infections (SSIs); 5. Urinary tract infections (UTIs) (Fig. 6)

Fig. 6. Relative share of clinical localization for Klebsiella pneumoniae in the Ruse region for 2017-2021.

Pseudomonas aeruginosa. There are 5 groups of organ localizations of NI: 1. VAP; 2. IEENOC; 3. LTRIs; 4. BSIs; urinary-tract catheter associated infections (UTCAIs).

Fig. 7. Clinical localizations of Pseudomonas aeruginosa in Ruse region for 2017-2021

CNS. Three organ localizations of NIs caused by CNS were registered during our investigation for the entire period. (Fig. 8)

Fig. 8. Relative share of clinical localizations of CNS NIs in the region for 2017-2021

The summary analysis of the etiological structure of healthcare associated infections is variable, determined not only by the profile of the department but also related to the mass use of antibiotics, sometimes incorrect. Most nosocomial infections arise from endogenous bacterial flora, although many critically ill patients eventually become colonized with resistant bacterial hospital strains. [5]. The Departments for the treatment of LRTIs and Pneumonia is a closed environment (hospital rooms, diagnostic offices, therapeutic offices) inhabited by pathogens - *Staphylococci, Pseudomonas* and others with a specific microbiological characteristic, with polyresistance, high virulence and invasiveness. They cause nosocomial epidemic outbreaks, which have been described [5].

In our studies, 37.88% of healthcare associated infections (HAIs) caused by CNS are laboratory-confirmed BSIs.
UTCAIs are very often superimposed on the main disease for which the patient is hospitalized, creating new problems and increasing his hospital stay. In 2021 this type infections occupied the fourth position in terms of frequency - 13.23%. The most recorded cases of local infection are those related to central venous catheter (with negative result from blood culture) – 51.70%. The spread of HAIs can spoil surgical interventions of vital importance organs to increase postoperative mortality. The omissions in the sanitary-hygiene regime, improper disinfection in medical facilities, wrong methods of sterilization lead to spread of NI. The incorrect manipulation techniques lead to injuries to the skin and mucous membranes, which are the entrance door for pathogens that cause NI [6].

The analysis of the etiological structure of HAIs in 2017-2021 in the Ruse region shows a decrease of unrecognized etiological agent from 2.39% for 2019 to 1.68% for 2021. Untested NIs cases maintain an upward trend. In comparison, the report of Y. Mitova and N. Ribarova (2009) on the dynamics of the etiological and clinical structure of nosocomial infections in Bulgaria during the period 1982-2008 shows that in our study, the indicators for untested infections (32.13%) are two or more times lower and for unrecognized infections (18.83%) ten times lower [7, 8]. The correct assessment and follow-up of colonization with microbial species in the wards, according to their profile, with priority to risk structures and regular training and internal control, contributed to this [6].

A leading place in the etiological structure of registered HAIs during the entire monitored period 2017-2021 in the Ruse region is occupied by Acinetobacter baumannii 17.65% (2017) and 11.25% (2021). Untested NIs cases maintain an upward trend. In comparison, the report of Y. Mitova and N. Ribarova (2009) on the dynamics of the etiological and clinical structure of nosocomial infections in Bulgaria during the period 1982-2008 shows that in our study, the indicators for untested infections (32.13%) are two or more times lower and for unrecognized infections (18.83%) ten times lower [7, 8]. The correct assessment and follow-up of colonization with microbial species in the wards, according to their profile, with priority to risk structures and regular training and internal control, contributed to this [6].

Leading in the nosological structure according to their localization in organs and systems are LRTIs in four out of five years 2017, 2018, 2019, 2020 - n=696, followed by SSIs, occupying the second position in the five years n=611 and in third place are UTCAIs in 2018,2019 n=272, followed by pneumonia in 2019, 2020 – n=168 and BSIs in 2021 – n=160.

CONCLUSIONS:
The etiological structure of nosocomial infections in the Ruse region is represented by 39 microbial species, with a share of the untested from 10.59% in 2017 reaching 15.75% in 2021, and the unrecognized from 2.39% in 2019 to 1.68% in 2021.

Gram-negative flora is a group with the largest relative share among the isolated microbial species - 62% (2017), followed by gram-positive 23.02% (2017) and a much smaller relative share of fungi, viruses up to 3%, and single anaerobes.

The clinical localization of the leading etiological agents is three organ localizations for Acinetobacter baumannii, five organ localizations for Klebsiella pneumoniae, and 5 organ localizations for Pseudomonas aeruginosa.

Analysis of healthcare-associated infections (HAIs) caused by the CNS in 2021 shows that 37.88% are laboratory-confirmed BSIs.

In the structure of the species of microorganisms in 2021, Gramm (-) and fungi dominate due to the excessive antibiotic use in the Covid-19 period. The registration of BSIs caused by Acinetobacter baumannii and Pseudomonas aeruginosa is increasing due to the large number of blood manipulations. The relative share of LTRIs and VAP caused by Acinetobacter baumannii and Klebsiella pneumoniae in 2020-2021 is increasing, as described by other authors [3, 5].

REFERENCES:
3. Ilieva D, Paunov Ts, Marinova M, Vankova D, Kolarova, M Ivanova E. Ätiological and clinical structure of the healthcare-associated infections in the University Hospital “St. Marina” – Varna for a period (2016-2020). J of IMAB. 2021; 27(Suppl 1):46-49. [Crossref]

Received: 28/02/2023; Published online: 24/10/2023

Address for correspondence:
Daniel Monov
Educational Sector “Public Health Inspector”, Medical College, Medical University of Varna;
3, Bregalnitsa Str., floor 10, Varna, Bulgaria.
E-mail: dmmonov@abv.bg,