The purpose of the following resume is to introduce the effects of using platelet-rich plasma for boosting the bone formation when added to various bone, and bone replacing materials. It also deals with the characteristics of the platelet-rich plasma. Further, a review of many articles dealing with the above-mentioned issue is presented, with the conclusion that adding platelet-rich plasma in bone and bone replacing materials can significantly improve the healing process of bone and gum tissue in the surgically treated area.

Key words: platelet-rich plasma, growth factors, new-bone formation

The purpose of the following survey is to introduce the effects of using platelet-rich plasma / PRP / for boosting the new bone formation. Recently in the field of the contemporary stomatology and particularly in the field of the oral surgery new technologies and materials came in, creating new opportunities in the treatment of the different nosological units.

New bone formation requires sufficient amount of osteogenous cells-predecessors capable of securing the formation of the desired bone. The transplantation field has to be filled with matrix, which facilitates the attachment and the differentiation of the osteoblastic precursor cells. It is also necessary these cells to be stimulated by growth factors helping the formation of the favourable phenotype cells. /6/ The other critical moment in the formation of a new bone is the formation of new blood vessels /angiogenesis/. /6/ The choice of bone-replacing materials includes autogenic bone, taken from the patient from different parts of the body /close or distant/. They can be cortical and spongious. Allobone grafts taken from the same or other person. They are freeze-dried mineralized bone /FDMB/ and freeze-dried demineralized bone /FDDB/ Xenobone materials are taken from different parts of other species /most common from mammals or from the exoskeleton of a coral/. The alloplastic bone substitutes are synthetically obtained and differ by their crystal size /hydroxylapatites(HA) and tricalciumphosphate ceramics (βTCP)/.

The perfect Bone Replacement Graft Material- BRGM has to have the following features: osteogenesis, osteoinductivity and osteoconductivity. /15/ The osteogenesis is a process in the course of which a new bone is formed directly from the osteoblasts. The osteoinductivity is the ability of the bone substitute to transform the mesenchymal cells into osteoblasts and by these means to lead to a new bone formation. Osteoinductivity is a process allowing bone apposition from the stimulation of the existing/present/ surrounding bone. For the present is considered that only autogenic bone substitutes possess partially all the three features and thus the autogenic bone is considered a “gold standard” among the bone-substitution materials. /9/ Despite that the research and the production of new bone-substitution materials continues, as well as the development of the existing ones. The main reason for that is the effort to avoid a double trauma of the patient and the promising features of the nonautogenous substitutes.

The platelet-rich plasma is a product, which is a concentration of platelets in a small volume of plasma. /8/ The platelets produce the following growth factors: /PDGF/-Platelet-Derived Growth Factor, / TGF-β /-Transforming Growth Factor- β, / VEGF /-Vascular Endothelial Growth Factor, /IL –I / – Interleukin-I, /BFGF /– Basic Fibroblast Growth Factor, /IGF /- Insulin - like Growth Factor. /2/ In the rich of platelets plasma there are also small amounts of immune-component cells and plasma. /8/

The PDGF- is a basic dimeric glycoprotein with two disulphide-bonded polypeptides referred to as A and B chains. Isoform PDGF are possible – AA; BB and heteroform AB. All the isofoms activate after the platelets are adhered in the wound. /2/ In vitro PDGF allows the formation of periodontal ligament of fibroblast cells and helps the synthesis of collagen and proteins. AA and BB isoforms increase the proliferation of bone cells.

The IGF has two forms I and II. They are single-chained peptides that bind with some insulin receptors and participate in the formation of numerous tissues, including teeth. IGF I stimulates the bone formation, proliferation and differentiation. /4/ The increasing activity of human osteoblasts was displayed after the combination of PDGF, IGF,
TFG-β and EGF /Epidermal Growth factor/. People treated with recombination PDGF-BB and rhIGF-I and methylcellulose as a host, showed 43.2% sealing of the bone defects compared with 18.5% in the control group. /5/

TFG-β is a homodimetric proteins, participating in the formation and development of numerous tissues. TGF-β is used separately and in a combination with PDGF-BB to activate the fibroblasts. TGF-β stimulates the biosynthesis of collagen I-type, fibrinonectine and induces the deposition of bone matrix. /3/ In other researches the application of TGF-β led to substantial increase of the bone regeneration in oral bone defects. /11/

An easy way to obtain growth factors in high concentration is to make platelet-rich autologe plasma. The use of growth factors contained in PRP is known to medical science and is used in different surgical interventions including the oral surgery.

In 1982 it is mentioned by Matras H. for the first time in maxillofacial surgery about the great potential of a platelet product /fibrin glue/. He uses a combination of bone transplant and fibrin clay to treat big odontogenic cysts. In 1994, Tayapongsak P. et al. suggest adding autogene fibrin clay to a spongous bone in large reconstructions of lower jawbone defects. In 1998, Marx R. et al. publish a methodology for extraction of autogenic platelet-rich plasma. /7/ They suggest the use of PRP together with autogenic spongous bone. According to Marx R., the platelet-rich plasma on its own does not have osteoinducctional effect. It does not induce the formation of a new bone without the presence of bone cells. Such osteoinductive potential has only the bone morphogenetic proteins /BMP- Bone Morphogenetic Proteins/, which are capable to produce a new bone de novo. /8/

Many researches confirm that the adding of platelet-rich plasma to bone and bone-substitution materials may lead to the increasing of the size and the rate of bone formation. Indisputable positive effect from the adding of PRP is observed when an autogenic bone is used. /15/

According to some researches, the use of PRP does not show the expected good results because the effect of the containing PRP is short and continues for about 24-48 hours after their implantation. /15/

Numerous researches have been made in the last years to show the possibility of PRP to increase bone formation in combination with non-autogenic bone substitutes like different alogenic /FDMB, FDDB/ /1/, xenogenic /ABM-Anorganic Bovine-derived Bone Material/ /16/ and aloplastic materials /β-TCP/ /15/. Part of the researchers confirm the positive effect of PRP in combination with alogenic, xenogenic and aloplastic materials, but they do not indicate statistically considerable values. /1, 13, 14/ .

Wiltfand J. et al. consider that the adding of platelet-rich plasma to a xenobone in not effective and there is no additional benefit from it. /15/

In the end, we could make the following conclusions:

1. The adding of platelet-rich plasma to autogenic bone has an undisputable result and leads to the increase of the formation of a new bone and helps the healing of the soft tissues in the augmentation area, which leads to better results in oral, maxillofacial surgery, parodontal surgery and implantology.

2. The adding of platelet-rich plasma in combination with alogenes, xenogenes and aloplastic materials leads to better results, but data is statistically unreliable in most of the researches.

3. The presence of some controversial results gives us a reason to support the suggestion of other researchers /15/ that additional scientific research is needed to reveal the potential of the platelet-rich plasma in combination with different bone and bone-substitution materials finally leading to the standardization of the procedure.

REFERENCES:

Address for correspondence:
D-r Ivan Chenchev
Department of Oral Surgery, Faculty of Stomatology, Medical University, Plovdiv
24, Veliko Tarnovo str., 4000 Plovdiv, Bulgaria
Mobile: +359/888722321
E-mail: ivan_chenchev@yahoo.com;